a2 United States Patent

Karmarkar et al.

US009465737B1

US 9,465,737 B1
Oct. 11, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(60)

(1)

(52)

(58)

MEMORY SYSTEMS INCLUDING A
DUPLICATE REMOVING FILTER MODULE
THAT IS SEPARATE FROM A CACHE
MODULE

Applicant: Toshiba Corporation, Minato-ku,
Tokyo (JP)

Inventors: Sandeep Karmarkar, Pune (IN);

Paresh Phadke, Pune (IN)

Assignee: Toshiba Corporation, Tokyo (JP)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 190 days.

Appl. No.: 13/921,562

Filed: Jun. 19, 2013

Related U.S. Application Data

Provisional application No. 61/667,051, filed on Jul.
2, 2012.

Int. CL.

GO6F 12/0802 (2016.01)

GO6F 12/08 (2016.01)

GO6F 3/06 (2006.01)

GO6F 12/02 (2006.01)

U.S. CL

CPC GO6F 12/0802 (2013.01); GOGF 3/0608

(2013.01); GO6F 3/0641 (2013.01); GO6F
3/0656 (2013.01); GO6F 3/0683 (2013.01);
GO6F 12/023 (2013.01)
Field of Classification Search
None
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

4,920,478 A * 4/1990 Furuya etal. ... 711/136
8,457,018 B1* 6/2013 Ruefetal. 370/256
8,473,690 B1* 6/2013 Condict 711141
8,732,403 B1* 5/2014 Nayak 711/135
8,930,648 Bl1* 1/2015 Storer etal. 711/154
9,043,555 B1* 52015 Khona GOG6F 3/0641
711/118

2007/0266056 Al* 11/2007 Stacey GO6F 17/30221
2008/0243992 Al* 10/2008 Jardetzky GO6F 17/30067
709/203

2008/0276088 Al* 11/2008 Ahlquistccoovvvne. 713/168
2009/0089483 Al* 4/2009 Tanaka et al .. 711/103
2009/0089534 Al* 4/2009 Zohar et al. 71173
2010/0031000 A1* 2/2010 Flynn et al. 711216
2011/0055471 A1* 3/2011 Thatcher et al. 711/114
2011/0125950 A1* 5/2011 Haustein et al. 711/4
2011/0238634 Al1* 9/2011 707/692
2012/0117562 Al1* 5/2012 GO6F 9/45558
718/1

2012/0166401 Al* 6/2012 Lietal. ...cccooovninnnn. 707/692
2013/0054906 Al* 2/2013 Anglin et al. 7117159
2013/0268498 Al* 10/2013 Sisco etal. ..o 707/692

* cited by examiner

Primary Examiner — Midys Rojas
Assistant Examiner — Chie Yew
(74) Attorney, Agent, or Firm — White & Case LLP

(57) ABSTRACT

A memory system includes a cache module configured to
store data. A duplicate removing filter module is separate
from the cache module. The duplicate removing filter mod-
ule is configured to receive read requests and write requests
for data blocks to be read from or written to the cache
module, selectively generate fingerprints for the data blocks
associated with the write requests, selectively store at least
one of the fingerprints as stored fingerprints and compare a
fingerprint of a write request to the stored fingerprints.

21 Claims, 5 Drawing Sheets

80—\ Application Read miss
F 3 F Y
) Cache Writes (WT/WB)
Wn(e" [(—64
86— Duplicate Removing —»| Cache Module
Filter Module data read
82 —| FP Managing -
BEEa Module \ >
data_sync
N N
Read miss
67
Write-through | 4 Sync ggg:;ate to

Backend Data Store

US 9,465,737 B1

Sheet 1 of 5

Oct. 11, 2016

U.S. Patent

¢ 9Old

ayoeo
0} ajended 29

21015 ejeq puayoeg

Ju

A

AS

3

A

[uBnosy-alum

SSIW peay J
sufs ejep

/ K
< s|npow
_ Buibeuepyy 44
B2l eje
pesl eiep aInpow Jayi4
a|npowy ayoes - Buinoway seandng
yg—/ _ Towm
(8MVLM) salup Byoe)
A 4 A 4
SSiW peay uonesijddy N_— 08

a|npony
ayoen

~N
~

19+

[+2}
©

1 "OId

al0}g ejeg puayoeg

vedpecsscanscacsan

)

$123lq0 WASAS Bl

PRI

0}

-

A 4

)

wayshg a)14 prepuers

Lecccccsnceccsvrensvorrracccnnacacanccnnas

F 3

A 4

vo—)

SNPoOW 1914
Bumowsy syeadng [~—99

N —08

US 9,465,737 B1

Sheet 2 of 5

Oct. 11, 2016

U.S. Patent

¥ "Old

10 70ig Bleq

3|Npoy ayoe

escancscacsssccccccesenmenand

96

€ 'Old

Jey wcom0+>|J

ainpow
Buibeuepy

aINpow JaliIy

eeperoy | [

anpoy aysen

Buinowsy syeandng

o

X Jos-jo1 ayoen

da+1a+X I\&

. X: wa

US 9,465,737 B1

Sheet 3 of 5

Oct. 11, 2016

U.S. Patent

g

9 "Old

"Old

pu3

pu3

961
N\

v pue 1@ %20[q eiep ‘dd4
yiim Suoje ajnpow ayaed 0}
%30}qg eiep puas ‘uoneddde
33 01)0eq ¥20|q Ejep puas

T

‘31015 puayIeq Sy} WOl
%70|q e3ep 3y} peay

o

A 4

JNPOW 3YILI 0} IUBIVA
ayaed pue ygq puas

Nﬂl\

*ajnpows ayoed ay)
wouy ¥20|q eiep ay} peay

L

}2eq 22U
Spuas ajnpows ayded

djgel ayy
ul T Aq Junod 44 aseanu)

oL —" q

3|npow ayred 0} 44 pue
Vg1 %§20|q ejep puasg

2 uoneoyddy,
woyy }sanbay
pesy

08i

F

mN_.L

ovrlv vl

)

ay) saoq

Zuonesyddy
By} wol} Ejep ajum
BGuiosu)

»

(s)

US 9,465,737 B1

Sheet 4 of 5

8 "Old

810)S ElRg pUANORYG

3
84 A puayoe
0} puayoeg a '
£quss 7 o} isanbai 7 N w_u_
JNd
0} JaI2 SpuUas ayoen X
3Inpo p 3|Npo Jand {inpon . 9|npop Jayi4
ayoe)n 2Q+Z+d4 Buinoway ajeadng ayoen 1a + A " Buinoway ayeadng
juasqe 7 >

Oct. 11, 2016

U.S. Patent

vo

moL

vo)

¢oNI\.

US 9,465,737 B1

Sheet 5 of 5

Oct. 11, 2016

U.S. Patent

6 Old
X %2014 19IA3
ﬁ (X %2019 enbiun]g4+j210
{INpon
aysed
[AwoiqdnpldsHeiy

~[xld4

-[Ald3

o

8|npo =4
6uinowsay aeadng

me

US 9,465,737 B1

1
MEMORY SYSTEMS INCLUDING A
DUPLICATE REMOVING FILTER MODULE
THAT IS SEPARATE FROM A CACHE
MODULE

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of U.S. Provisional
Application No. 61/667,051, filed on Jul. 2, 2012. The entire
disclosure of the application referenced above is incorpo-
rated herein by reference.

FIELD

The present disclosure relates to systems using a cache,
and more particularly to a duplicate removing filter module
for the cache.

BACKGROUND

The background description provided herein is for the
purpose of generally presenting the context of the disclo-
sure. Work of the presently named inventors, to the extent
the work is described in this background section, as well as
aspects of the description that may not otherwise qualify as
prior art at the time of filing, are neither expressly nor
impliedly admitted as prior art against the present disclo-
sure.

A host device such as a computer, smart phone or other
device includes memory to store data. The memory may
include a cache that is used to improve system performance.
The cache stores data so that future requests for that data can
be handled more quickly. The data that is stored within the
cache may include values that were previously used and/or
copies of values that are stored elsewhere.

If data requested by the host is stored in the cache, a cache
hit occurs and the cache returns the data. Otherwise a cache
miss occurs and the data is fetched from its original storage
location. Performance improves as the number of cache hits
relative to cache misses increases. However, cache is more
expensive than standard memory. Therefore, the cache is
usually quite a bit smaller than the standard memory.
Designers tend to balance cost (which increases with cache
size) and performance (which also increases with cache
size). As can be appreciated, management of the cache can
significantly improve cache performance. Since the cache is
relatively small, it is important to remove duplicate data.

SUMMARY

A memory system includes a cache module configured to
store data. A duplicate removing filter module is separate
from the cache module. The duplicate removing filter mod-
ule is configured to receive read requests and write requests
for data blocks to be read from or written to the cache
module, selectively generate fingerprints for the data blocks
associated with the write requests, selectively store at least
one of the fingerprints as stored fingerprints and compare a
fingerprint of a write request to the stored fingerprints.

In other features, the duplicate removing filter module is
configured to send one of the data blocks associated with the
write request, a corresponding logical block address and the
fingerprint of the write request to the cache module when the
fingerprint of the write request does not match any of the
stored fingerprints.

10

15

20

25

30

35

40

45

50

55

60

65

2

In other features, the duplicate removing filter module is
configured to, when the fingerprint of the data block for the
write request matches one of the stored fingerprints, send a
logical block address and a cache reference corresponding to
a matching one of the stored fingerprints to the cache
module.

In other features, the duplicate removing filter module is
configured to read one of the data blocks associated with a
read request from the cache module when a read hit occurs.

In other features, the duplicate removing filter module is
configured to read one of the data blocks associated with a
read request from a backend data store when a read miss
occurs; send the one of the data blocks from the backend
data store to an application of a host device; generate a
fingerprint for the one of the data blocks; and send the one
of'the data blocks, a corresponding logical block address and
the fingerprint for the one of the data blocks to the cache
module.

In other features, when the cache module evicts one of the
data blocks, the cache module identifies whether the one of
the data blocks is a duplicate or unique and sends a cache
reference and the fingerprint corresponding to the one of the
data blocks to the duplicate removing filter module.

Further areas of applicability of the present disclosure will
become apparent from the detailed description, the claims
and the drawings. The detailed description and specific
examples are intended for purposes of illustration only and
are not intended to limit the scope of the disclosure.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is an example of a functional block diagram of a
memory system including a cache module, a duplicate
removing filter module, and a backend data store including
a standard file system and a file system object according to
the present disclosure.

FIG. 2 illustrates an example of a diagram for the memory
system of FIG. 1 according to the present disclosure.

FIG. 3 illustrates an example of a diagram for a write
operation for the memory system of FIG. 1 according to the
present disclosure.

FIG. 4 illustrates an example of a cache metadata manager
for a write operation for the memory system of FIG. 1
according to the present disclosure.

FIG. 5 is a flowchart illustrating an example of a method
for writing data according to the present disclosure.

FIG. 6 is a flowchart illustrating an example of a method
for reading data according to the present disclosure.

FIG. 7 illustrates a workflow for an example of a read hit
according to the present disclosure.

FIG. 8 illustrates a workflow for an example of a read
miss according to the present disclosure.

FIG. 9 illustrates a workflow for an example of an
eviction according to the present disclosure.

In the drawings, reference numbers may be reused to
identify similar and/or identical elements.

DESCRIPTION

FIG. 1 shows a memory system 50 including a cache
module 64, a duplicate removing filter module 66, and a
backend data store 67 including a file system 68 and a file
system object 72. In some examples, the file system object
72 is a standard Linux file system. Examples of the cache
module 64 in the memory system 50 may include a solid
state drive (SSD). The cache module 64 may be a monolithic
integrated circuit.

US 9,465,737 B1

3

Removal of duplicates is typically performed exclusively
by the cache module 64. However, this approach may tend
to limit performance since the processing power of the cache
module 64 is somewhat limited as compared to processing
power available at a host device. According to the present
disclosure, the memory system 50 creates an additional layer
that is separate from the cache module 50 to perform some
of the processing relating to removing duplicates.

FIG. 2 illustrates a workflow for the memory system of
FIG. 1. In a write-back operation, an application 80 associ-
ated with a host outputs a write request for a data block to
the duplicate removing filter module 66. A fingerprint man-
aging module 82 in the duplicate removing filter module 66
calculates a fingerprint for the data block and adds the
fingerprint to a table 84. The fingerprint has a smaller size
than the data block. In some examples, the fingerprint may
be generated using a hash function that uniquely identifies
data with a high probability. In some examples, the finger-
print managing module 82 generates the fingerprint using an
algorithm such as SHA1 or SHA256, although other algo-
rithms can be used. The duplicate removing filter module 66
sends the data block, the fingerprint and a corresponding
logical block address to the cache module 64.

In a write-thru operation, the application 80 outputs a
write request that is identified as a write-thru operation to the
duplicate removing filter module 66. The duplicate remov-
ing filter module 66 operates as above. At the same time the
data block will be sent directly to the backend data store 67
without duplicate removal.

In a read hit operation, the application 80 outputs a read
request to the duplicate removing filter module 66. The
duplicate removing filter module 66 checks the cache mod-
ule 64 to determine whether the requested data is stored in
the cache module 64. Duplicate removal will not be required
because the duplicate removing filter module 66 points to
the data block that is requested and sends the data back to the
application 80.

In a read miss operation, the application 80 outputs a read
request to the duplicate removing filter module 66. The
duplicate removing filter module 66 checks with the cache
module 64 to determine whether the requested data block is
stored in the cache module 64. If not, the duplicate removing
filter module 66 reads the data block from the backend data
store 67 and sends the data block back to the application 80.
The duplicate removing filter module 66 sends the data
(either synchronously or asynchronously) to the cache mod-
ule 64 to populate the cache module 64 for subsequent read
iterations.

FIGS. 3 and 4 illustrate a workflow for a write operation
for the memory system of FIG. 1. At 90, the application 80
outputs a first write request for logical block address X to the
duplicate removing filter module 66. The fingerprint man-
aging module 82 calculates the fingerprint and checks in the
table 84 to determine whether the fingerprint already exists.
If not, the duplicate removing filter module 66 sends the
logical block address of X to the cache module 64 along with
the data block D1 and the corresponding fingerprint. A
metadata manager 96 of the cache 64 maintains the finger-
print of X along with X pointing to data block D1. The cache
module 64 will also send a cache reference c,,,back to the
duplicate removing filter module 66.

At 94, the application 80 outputs a second write request
corresponding to LBA Y to the duplicate removing filter
module 66. The fingerprint managing module 82 calculates
the fingerprint of the block and finds that the fingerprint is
a duplicate of X. The duplicate removing filter module 66
sends Y and the cache reference c,,to cache module 64 and

10

15

20

25

30

35

40

45

50

55

60

65

4

increments a fingerprint counter of X by 1 in the table 84.
The duplicate removing filter module 66 maintains the cache
reference of Y pointing to the data block of X. The duplicate
removing filter module 66 sends the cache reference to the
cache module to let the cache module know that Y is a
duplicate of X. In FIG. 4, X and Y both point to data block
D1 in cache metadata that is managed by a cache metadata
managing module 96.

FIG. 5 illustrates an example of a method for writing data
according to the present disclosure. At 120, control deter-
mines whether a write request with incoming data has been
received at the duplicate removing filter module from the
application. At 124, control determines whether a fingerprint
for the data block exists. If 124 is true, control continues at
128 and increases the corresponding fingerprint count by
one. At 132, control sends the logical block address and
corresponding cache reference from the table to the cache
module. The cache reference corresponds to the matched
fingerprint in the table.

1f 124 is false, the duplicate removing filter module sends
the data block, logical block address and the fingerprint to
the cache module. At 144, the cache module sends the cache
reference ¢, to the duplicate removing filter module.

FIG. 6 is a flowchart illustrating an example of a method
for reading data according to the present disclosure. At 180,
control determines whether a read request has been received
at the duplicate removing filter module from the application.
If 180 is true, control determines whether there is a read hit
at 184. If 184 is true, control reads the data block from the
cache module at 188 and control ends.

If 184 is false, control reads the data block from the
backend data store at 192. At 196, the duplicate removing
filter module sends the data block back to the application.
The duplicate removing filter module also sends the data
block to the cache module along with the fingerprint, the
data block and the logical block address.

FIG. 7 illustrates a workflow for an example of a read hit
according to the present disclosure. At 204, the application
80 outputs a read request for LBA Y to the duplicate
removing filter module 66. The duplicate removing filter
module 66 sends the request for LBA'Y to the cache module
64. The cache metadata points to data block D1. The cache
module 64 returns the LBA'Y and the data block D1 to the
duplicate removing filter module 66. The duplicate remov-
ing filter module 66 sends the data block D1 to the appli-
cation 80.

FIG. 8 illustrates a workflow for an example of a read
miss according to the present disclosure. The application 80
sends a read request for LBA Z to the duplicate removing
filter module 66. The duplicate removing filter module 66
sends the request for the LBA Z and the fingerprint to the
cache module 64 and/or generates the fingerprint and checks
to see if it is present in the table. In this example, the LBA
Z.is not present in the cache module. The duplicate removing
filter module 66 sends a request for the LBA Z to the
backend data store. The backend data store sends the data
block D2 corresponding to the LBA Z to the duplicate
removing filter module 66. The duplicate removing filter
module 66 calculates the FP and sends the FP, the data block
D2 and the LBA Z to the cache module. The cache metadata
managing module 96 adds metadata to an existing database
stored therein. The LBA Z points to data block D2 in the
cache module 64. The cache module 64 sends the cache
reference for the LBA Z to the duplicate removing filter
module 66 for subsequent read requests.

FIG. 9 illustrates a workflow for an example of an
eviction according to the present disclosure. The table 82 in

US 9,465,737 B1

5

the duplicate removing filter module 66 maintains a counter
storing the number of duplicate fingerprints pointing to a
single data block. When the cache module 64 evicts one of
the data blocks, the cache module 64 sends the cache
reference c,,and the fingerprint to the duplicate removing
filter module 66 to decrement the counter maintained by the
duplicate removing filter module 66. For duplicate block
eviction, the cache module instructs the duplicate removing
filter module 66 to reduce the counter. For unique block
eviction, the counter will be reduced along with the data
block eviction. Unique blocks are blocks that do not have
duplicates.

Advantages include increasing the read hit ratio for the
cache. The penalty incurred due to read-miss cycles in such
designs will be reduced. However, there will be a latency
increase due to increased cycles at the duplicate removing
filter module.

The memory system according to the present disclosure
separates the duplicate removing filter module 66 from the
cache module 64 across a defined and complete set of
interfaces. For example only, in one configuration the dupli-
cate removing filter module 66 can be located on or asso-
ciated with the host device while the cache module 64 can
reside on a Peripheral Component Interconnect Express
(PCle) card. Alternately, the duplicate removing filter mod-
ule 66 and the cache module 64 can be associated with the
host or the PCle card.

Each of these configurations has its own benefits with
respect to CPU utilization, Plug-n-Play properties, perfor-
mance limits, etc. The separation also allows the duplicate
removing filter module 66 and the cache module 64 to be
developed by two different parties.

The foregoing description is merely illustrative in nature
and is in no way intended to limit the disclosure, its
application, or uses. The broad teachings of the disclosure
can be implemented in a variety of forms. Therefore, while
this disclosure includes particular examples, the true scope
of the disclosure should not be so limited since other
modifications will become apparent upon a study of the
drawings, the specification, and the following claims. As
used herein, the phrase at least one of A, B, and C should be
construed to mean a logical (A or B or C), using a non-
exclusive logical OR. It should be understood that one or
more steps within a method may be executed in different
order (or concurrently) without altering the principles of the
present disclosure.

In this application, including the definitions below, the
term module may be replaced with the term circuit. The term
module may refer to, be part of, or include an Application
Specific Integrated Circuit (ASIC); a digital, analog, or
mixed analog/digital discrete circuit; a digital, analog, or
mixed analog/digital integrated circuit; a combinational
logic circuit; a field programmable gate array (FPGA); a
processor (shared, dedicated, or group) that executes code;
memory (shared, dedicated, or group) that stores code
executed by a processor; other suitable hardware compo-
nents that provide the described functionality; or a combi-
nation of some or all of the above, such as in a system-on-
chip.

The term code, as used above, may include software,
firmware, and/or microcode, and may refer to programs,
routines, functions, classes, and/or objects. The term shared
processor encompasses a single processor that executes
some or all code from multiple modules. The term group
processor encompasses a processor that, in combination
with additional processors, executes some or all code from
one or more modules. The term shared memory encom-

30

40

45

55

6

passes a single memory that stores some or all code from
multiple modules. The term group memory encompasses a
memory that, in combination with additional memories,
stores some or all code from one or more modules. The term
memory may be a subset of the term computer-readable
medium. The term computer-readable medium does not
encompass transitory electrical and electromagnetic signals
propagating through a medium, and may therefore be con-
sidered tangible and non-transitory. Non-limiting examples
of a non-transitory tangible computer readable medium
include nonvolatile memory, volatile memory, magnetic
storage, and optical storage.

The apparatuses and methods described in this application
may be partially or fully implemented by one or more
computer programs executed by one or more processors.
The computer programs include processor-executable
instructions that are stored on at least one non-transitory
tangible computer readable medium. The computer pro-
grams may also include and/or rely on stored data.

What is claimed is:

1. A memory system comprising:

a cache memory configured to store data;

a backend data store;

a duplicate removing filter separate from the cache

memory and configured to:
receive read requests and write requests for data blocks to
be read from or written to the cache memory;

generate fingerprints for the data blocks associated with
the write requests and store at least one of the finger-
prints in the duplicate removing filter;

determine a match between a fingerprint of a data block

of a write request and the at least one stored finger-
prints;

send a logical block address of the write request and a

cache reference corresponding to the matched finger-
print to the cache memory in response to a single
condition indicating that the fingerprint of the data
block matches the at least one stored fingerprints;

in response to receiving a write request as a write-back

operation, send the logical block address of the write
request, the fingerprint of the write request and the data
block to the cache memory; and

in response to identifying a write request as a write-thru

operation, the duplicate removing filter is configured to
send the data block to the backend data store without
performing duplicate removal.

2. The memory system of claim 1, wherein the cache
memory is implemented as an integrated circuit.

3. The memory system of claim 1, wherein the cache
memory comprises a solid state drive.

4. The memory system of claim 1, wherein the duplicate
removing filter is configured to send one of the data blocks
associated with the write request, the logical block address
of the write request and the fingerprint of the write request
to the cache memory when the fingerprint of the write
request does not match any of the stored fingerprints.

5. The memory system of claim 4, wherein the cache
memory is configured to send a cache reference to the
duplicate removing filter in response to the duplicate remov-
ing filter sending the data block, the logical block address
and the fingerprint to the cache memory.

6. The memory system of claim 4, wherein the cache
memory is configured to maintain metadata including the
fingerprint and the logical block address of the one of the
data blocks associated with the write request.

7. The memory system of claim 1, wherein the duplicate
removing filter increments a counter associated with the one

US 9,465,737 B1

7

of the stored fingerprints when the fingerprint of the write
request matches one of the stored fingerprints.
8. The memory system of claim 1, wherein the duplicate
removing filter is configured to read one of the data blocks
associated with a read request from the cache memory when
a read hit occurs.
9. The memory system of claim 1, wherein the duplicate
removing filter is configured to:
read one of the data blocks associated with a read request
from a backend data store when a read miss occurs;

send the one of the data blocks associated with the read
request from the backend data store to an application of
a host device;

generate a fingerprint for the one of the data blocks

associated with the read request; and

send the one of the data blocks associated with the read

request, a logical block address associated with the read
request and the fingerprint for the one of the data blocks
associated with the read request to the cache memory.

10. The memory system of claim 9, wherein the cache
memory is configured to send a cache reference to the
duplicate removing filter in response to the duplicate remov-
ing filter sending the one of the data blocks associated with
the react request, the logical block address associated with
the read request and the fingerprint for the one of the data
blocks associated with the read request to the cache memory.

11. The memory system of claim 1, wherein the finger-
prints uniquely identify the data blocks and when the cache
memory evicts one of the data blocks, the cache memory
identifies whether the one of the data blocks is a duplicate or
unique and sends a cache reference and the fingerprint
corresponding to the one of the data blocks to the duplicate
removing filter.

12. The memory system of claim 11, wherein when the
one of the data blocks to be evicted is a duplicate, the cache
memory instructs the duplicate removing filter to reduce a
counter associated with the one of the data blocks.

13. The memory system of claim 11, wherein when the
one of the data blocks to be evicted is unique the cache
memory is configured to:

instruct the duplicate removing filter to reduce a counter

associated with the one of the data blocks; and
remove the one of the data blocks from the cache memory.

14. The memory system of claim 1, wherein, in response
to identifying the write request as the write-thru operation,
the duplicate removing filter is further configured to send the
logical block address of the write request, the fingerprint of
the write request and the data block to the cache memory
without performing duplicate removal.

15. The memory system of claim 1, further comprising: an
input connection configured to receive the write request as
either the write-back or write-thru operation from an appli-
cation on a host device.

15

40

45

50

8

16. A method for operating a memory system comprising:

separating a duplicate removing filter from a cache;

and in the duplicate removing filter:

receiving read requests and write requests for data blocks

to be read from or written to the cache memory;
generating fingerprints for the data blocks associated with
the write requests and storing at least one of the
fingerprints in the duplicate removing filter; and
determine a match between a fingerprint of a write request
and the at least one of the stored fingerprints;

send a logical block address of the write request and a

cache reference corresponding to the matched finger-
print to the cache in response to a single condition
indicating that the fingerprint of the data block matches
the at least one stored fingerprints;

in response to receiving a write request as a write back

operation, send the logical block address of the write
request, the fingerprint of the write request and the data
block to the cache memory; and

in response to identifying the at least one request is for a

write-thru operation, the duplicate removing filter
sends the first data block to a backend data store
without performing duplicate removal.

17. The method of claim 16, further comprising sending
one of the data blocks associated with the write request, the
logical block address of the write request and the fingerprint
of the write request to the cache when the fingerprint of the
write request does not match any of the stored fingerprints.

18. The method of claim 17, further comprising sending
a cache reference to the duplicate removing filter in response
to the duplicate removing filter sending the data block, the
logical block address and the fingerprint to the cache.

19. The method of claim 17, further comprising main-
taining metadata including the fingerprint and the logical
block address of the one of the data blocks associated with
the write request.

20. The method of claim 16, further comprising:

reading one of the data blocks associated with a read

request from a backend data store when a read miss
occurs;

sending the one of the data blocks associated with the read

request from the backend data store to an application of
a host device;

generating a fingerprint for the one of the data blocks

associated with the read request; and

sending the one of the data blocks associated with the read

request, a logical block associated with the read request
address and the fingerprint for the one of the data
blocks associated with the read request to the cache.

21. The method of claim 16, further comprising: receiving
the write request as either the write-back or write-through
operation from an application on a host device.

#* #* #* #* #*

